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The spectral method is used to construct an exact solution of the linearized problem of the generation of disturbances by localized 
sources that execute arbitrary periodic motions in a viscous exponentially stratified fluid. The expressions obtained do no1 contain 
any adjusting parameters and describe conical beams of three-dimensional periodic internal waves and two types of boundary 
layers, the spatial scale of which is given by the kinematic viscosity and the buoyancy frequency of the medium. The thickness 
of one of them, which is analogous to Stokes periodic flow in a homogeneous viscous fluid, is specified by the kinematic viscosity 
and the wave frequency, that is, it additionally depends on a ratio of the wave and buoyancy frequencies. The thickness of the 
specific internal boundary layer also depends on the geometry of the problem. In the approximation of weak stratification and 
low viscosity, asymptotic estimates of the expressions obtained are presented for two types of generators, namely, in the form 
of a plane inclined rectangle that vihrates along its surface (a frictional source) and along the normal to it (a piston source) in 
the non-degenerate case when the wave cone does not touch the radiating plane. In limiting cases the analytical expressions 
obtained agree with known exact solutions of the problem of generating axially symmetric and two-dimensional periodic internal 
waves. 0 2003 Elsevier Ltd. All rights reserved. 

An approximate solution of the problem of the generation of two-dimensional infinitesimal periodic 
waves in a viscous stratified fluid by a horizontal elliptic cylinder is known [l]. The exact solution of 
the problem of the excitation of internal waves by a vibrating inclined strip takes into account the 
boundary layer that arises [2]. In practice the sources of periodic waves in most cases are localized, and 
the internal waves are three-dimensional ones [3]. In the theory of wave processes such three-dimensional 
periodic waves propagating along the generatrix of wave cones play an essential role. A calculation of 
three-dimensional harmonic internal waves has been carried out only for a single special case, when 
the generator is part of the surface of a vertical cylinder [4], and the calculations are simplified 
considerably due to the match between the symmetries of the radiator and the wave-field geometry. 

The purpose of the present paper is to construct a solution of the linearized three-dimensional problem 
of the generation of a set of disturbances in a viscous exponentially stratified fluid by part of an inclined 
plane that executes arbitrary periodic motions. A complete solution that satisfies the system of equations 
of motion and the exact boundary conditions is found using the method presented previously in [2,4]. 

1. THE EQUATIONS OF MOTION AND THE BOUNDARY CONDITIONS 

Consider a stratified fluid whose density decays exponentially with height z: pa(z) = poo exp(-z/A), where 
A is the buoyancy scale and the z axis is directed opposite to the direction of the acceleration due to 
gravity g. In the Bussinesq approximation the linearized system of the equations of motion of a viscous 
incompressible fluid when there is no diffusion of salt has the form [5] 

dV 

poFt az = -a-+povAv-pge,. x-~z$? ap = 0, divv = 0 

where v = (u,, 4, u,), p and P are the varying velocity, density and pressure respectively, and e, is the 
unit vector directed along the z axis. Under natural and laboratory conditions the stratification is usually 
weak (A 9 H, where H is the maximum linear scale of the problem), and the viscosity is low (Nh: s v, 
where 1, is the characteristic wavelength and v is the kinematic viscosity). These properties are widely 
used in the theory of internal waves [l-4]. 
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The no-slip conditions on the boundary surface C are the boundary conditions for system of equations 
(1.1). In a viscous medium all disturbances decay at infinity. The medium is initially at rest. Under steady 
conditions of oscillation, which are considered in what follows, the time-dependence of all quantities 
is harmonic, and so we will everywhere omit the common factor exp(-iof). 

Part of an infinite plane, oriented at an arbitrary angle cp with respect to the horizon, and which 
executes periodic motions with frequency o and velocity amplitude uo, serves as the source of waves. 
The displacements occur in arbitrary directions, including the direction parallel to the surface (similar 
to the two-dimensional case [2]) or normal to it. 

TO simplify the writing, we will use simultaneously several orthogonal systems of coordinates, which 
are shown in the figure. The line of action of the gravity force defines the natural laboratory system of 
coordinates (x, y, z). 

The local system of coordinates (5, ?J, <) is connected with the radiating surface, which lies in the 
O&J plane and without loss of generality can be obtained by rotating the initial system of coordinates 
(x, y, z) by an angle cp around they axis. With this choice, the 5, n axes lie in the plane of the source, 
and the 6 axis is normal to it. 

The accompanying system of coordinates (q,p, a) is connected with the wave cone, the q axis is directed 
along the wave cone, the p axis is directed transversely, and c1 is the angular variable. Connections 
between these systems and the auxiliary cylindrical system (r, a, z) are given by the relations 

5 = xcoscp+zsincp, n = y, 6 = -xsincp+zcoscp 
x = rcosa, y = rsina 2 = L (1.2) 
P = r-sine-zcos0, q = rcose +zsin0 

The form of the incompressibility condition in system (1.1) enables one to introduce the toroidal- 
poloidal decomposition [6], that defines the three-dimensional fluid velocity in terms of two auxiliary 
scalar functions Cp and Y 

v = Vxe,Y+Vx(Vxe,Q) (l-3) 

The introduction of the potentials Q, and ‘P, although it also leads to an increase in the order of the 
system of equations (l.l), considerably simplifies the calculations, since it enables one to eliminate mixed 
derivatives with respect to the coordinates. 

Eliminating the pressure from system (1.1) and using expression (1.3), we obtain two equations for 
finding the functions @ and Y 

(02A - N2A, - iovA2)A,Q, = 0 (o - ivA)AIY = 0 (1.4) 

where A is the Laplace operator, Al = & + a;,, and N = $& is the buoyancy frequency. In view of 
expression (1.3), the solution of the equation AI@ = 0 corresponds to isopycnic motion of the fluid 
with zero vertical component of the velocity. Since such motion is also determined by the poloidal part 
of the potential y, the solution of the equation AL@ = 0 cannot be taken into account when analysing 
the wave disturbances caused by particle displacements from the horizon of neutral buoyancy. 

Besides, the solution of the equation AL@ = 0 (the second equations of (1.4)) describes non-dissipative 
motion of the fluid. However the equations of system (1.1) include a horizontal component of the friction 
force pov(a2v/az2), which is equal to zero only for motions of the form v = a(x, y) + zb(x, y). Since such 
motions cannot be excited by a source of finite size, they will not be considered in what follows. 

Taking the points outlined above into account, system (1.1) can be written in the form 

(02A-N2Al-iovA2)~ = 0 (o-ivA)Y = 0 (1.5) 

Disturbances of the pressure and the density are defined by the expressions 

P = po(kO + vA)adva2, p = -ip,AL@loh 

To simplify the writing, system (1.5) and the boundary conditions are presented in the local system 
of coordinates (5, n, <), connected with the radiating surface (see the figure). 

02A@ - N21(c0scpag - sincpaQ2 + at ja - iovA2@ = 0 

(co-ivA)Y = 0 
(1.6) 
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On the moving part of the plane we have v ( 1;=a = u(& n), and the boundary conditions for the 
potentials take the form 

Solutions of system (1.Q will be sought in the form of an expansion in Fourier integrals over the 
whole space. Due to the symmetry of the wave field, the analysis will be carried out only for the upper 
half space (5 > 0). 

2. CONSTRUCTION OF THE SOLUTION 

In the theory of periodic internal waves (o = const) the wave vectors k = (ky, k,, kz) that occur in the 
expansions for the potentials 

+=- 
@= I [A(kg, k,)exp(ik,(kg, k,K) + B(Q k,,)exp(ik2(Q, k&)1 x 

x exp( ik&, + ikqq)dkgdkq 

Y = 7C(k~, k,)exp(ik,(Q, k,,)< + ik5c + ik,q)dkcdk, 
-cm 

(2.1) 

are defined by the solutions of the dispersion equation corresponding to system (1.1) and are expressed 
in terms of two components of the wave vector ki = k,(k+ kq) (i = 1, 2, 3). Direct substitution of the 
expressions for the potentials (2.1) into system (1.6) gives the following equations for finding all 
components of the vector k 

co*(k* 1.2 + ki + kt) - N*[(kgcos’p - k,,,sincp)* + kt] + iov(kt, 2 + kt + kt)* = 0 

4 = -;+kl, 
(2.2) 

The conditions for the disturbances to decay at infinity are satisfied when the imaginary parts of the 
roots of the dispersion equation are greater than zero: Imk, > 0, ImkZ > 0 and Imk3 > 0. 

The coefficients A, B and C are found from the solutions of the system of differential equations 
obtained after substituting expressions (2.1) into boundary conditions (1.8) 

A(ktsincp + k,P,) + B(ktsincp + k,P,) + iCk,coscp = Ug 

- Ak,y, - Bk,.,y, + icy, = U, 

A(ktcoscp-k#,)+B(k~coscp-kgP2)-iCk,,sincp = Uy 

(2.3) 

where 

pi = k,sincp- ktcostp, yi = kicosv + kgsinq 
(2.4) 

(U(kg, k,,) is the Fourier transform of the source velocity u(& 11)). 
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The solutions of system (2.4) can be represented in the matrix form 

A 
B =; 

41 D,2 D3, ug 

D2, D22 D32 ‘, 
c D3, D32 D33 *( 

(2.5) 

which reflects the nature of the dispersion of three-dimensional internal waves. The matrix coefficients 
Dii are defined by the expressions 

4, = -iki kt+i(kz-k,)sin2q 
[ 1 - ik$2B3r 4, = -ik,,(ki + Pif> 

013 = - iki[(kz - k3)cos2tp+ k3] - ik2p2p3 

D2, = - iki 
[ 
kg-+ i(k, - k,)sin2cp 

I 
- ik#J33, D, = -i$(ki + Pt> 

D23 = - iki[(k, - k,)cos’cp + k,] - iklpIp3 

D,, = (k;cos2cp + k;)(k, - k,)k, 

D,, = (k, - k,)[- k&llfi2 + k$(k, + k2)sin2q + klcos2q)] 

D3, = (k, - k,W,,sincpl- kicoscp + k&y2 + k$2)J 

A = (k,-k2)~-kgP1P2P3+ik~coscp+ikf,~B3(y,sincp+P2costp)+y~B~-y~~~Jl 

Expressions (2.1), in which the coefficients A&, k,), B&k, krl) and C(kg, k,,) are defined by formulas 
(2.5), are the general solution of system (1 .l), which exactly satisfy boundary conditions (1.7). The family 
of solutions (2.1) includes not only waves, but also accompanying periodic solutions, the properties of 
which are defined by the relations between the real and imaginary parts of the solutions of dispersion 
equations (2.2). 

3. THE SOLUTION OF THE DISPERSION EQUATIONS 

Taking into account the smallness of the viscosity, the solutions of dispersion equations (2.2) are found 
by standard methods [7] 

k, = ky’+ ivk’,” 

k(O) = kgsin2q + 2~~0~0 , k;” = sine(kgsincpcosC3 + tccos~p)~ 

1 2P 2Np4~cos0 

k _ i+ signp 
2- 6 

-- kgsin2q+ ktl)6 
cp 2p 2cp 

(1) k, = 
i + signpk;(p(cos2q- sin2e) + 2sinqcoscp) + k$cos213 

6h CL2 
i+l k, = 6 

” 
+ +(k; + kfi) 

(3.1) 

K = Jw, p = sin2cp- sin28, 0 = arcsin(wlN) 

$=Jgf 6’=E 
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where 8 is the angle which the wave cone makes with the horizontal, 6, is the thickness of the internal 
boundary layer, calculated for the first time in the two-dimensional formulation of the problem [2] and 
8, is the thickness of the periodic (Stokes’) boundary layer, which also exists in a homogeneous viscous 
fluid [5]. 

Formulae (3.1) describe two types of motion: large-scale motion with characteristic dimension 
k = 2dk (Rekt P ImkI) and small-scale motion with characteristic thickness O(a) (RekZ,s - Imk~,s). 

In the approximation considered the root k, differs from the wave number for an ideal fluid only by 
a small imaginary correction. The real part of k, defines the length of the radiated wave, while the 
imaginary part defines the spatial structure of the beam of waves and the magnitude of the viscous 
attenuation. Taking into account relations (2.1) and (3.1) we note that the internal waves are 
characterized by the spectral density A(kg, k,). 

The roots k2 and k, describe periodic boundary flows. The expression with the coefficient B(kg, k,) 
defines the internal-wave boundary layer of thickness 6,. This type of periodic motion is a specific feature 
of a stratified fluid and has no analogues in a homogeneous medium. 

The coefficient C(kg, k,) specifies a viscous periodic boundary layer of thickness S,, which exists both 
in a stratified fluid and in a homogeneous fluid [5], where, in the three-dimensional case, it is degenerate 
(the multiple root in the corresponding solution of the dispersion equation). 

In the case of a homogeneous fluid (N -+ 0 and v is finite) the roots of the dispersion equations have 
the form 

k, = i,/mi, k, = k, = ,,/qq 

The merging of the roots k2 and k3 in the exact solution on changing to a homogeneous fluid indicates 
that the problem is degenerate. The inverse transition from a homogeneous fluid to a stratified fluid 
cannot be carried out in a uniform manner since in this case the degenerate periodic wave boundary 
layer splits into two others with a different dependence of their characteristics on parameters of the 
problem. 

On changing to a homogeneous fluid the approximate solutions of dispersion equations (3.1) take 
the form k2 = -kg sin 29/(2u) and k3 = 0. The differences in the structure of the expressions derived 
are a consequence of the use of regular and asymptotic methods of solving the dispersion equations. 
The paradox of “critical angles” in the theory of internal waves, which disappears if one uses the regular 
methods over the whole range of angular parameters of the problem (0, cp) [S], is connected with this. 

4. ANALYSIS OF THE GENERAL SOLUTION IN THE 
LOW-VISCOSITY APPROXIMATION 

The expressions for the coefficients A, B and C in (2.6) are simplified considerably in the case of low 
viscosity, and they take the form 

A(k&,)= 2 
l-isignp$zu + l- ik,62U lu 

X’S 2x”“xC 

i + signp ]p,]3n k,,(kGcos2V + k$sz Lr _ * W&,)=- l+i - 
sin2 cp N 5 

~+14w~g u _ -- 
x Jj sincp N rt 

i + 1 s+&(k~)coscp + kgsincp)g u -- 
$2 siw x N 5 

where 
x = k;coscp - kl,o, 

6, = ky)sincp - kgccwp = (kEcostpsin20 + tccosesincp)/p 

(4.2) 

(4.3) 
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In explicit form the coefficients A, B and C are given by their spectral representations UC, U,, and 
UC, that is, by the form of the source and the mature of its motion. 

In the expressions presented above the only parameter with the dimension of length is the universal 
microscale of periodic motions aN = m, that is the characteristic internal scale of the problem, which 
is determined only by the properties of the medium under consideration, namely, by the kinematic 
viscosity and the buoyancy frequency. Since this parameter is present in all expressions (4.1)-(4.4) 
it is fundamental in the theory of internal waves in a viscous fluid. In practice this scale must be 
distinguished in the structure of the spatial spectra of all types of motion in stably stratified media in 
which the wave component is always present. 

To obtain expressions that allow a direct comparison with laboratory experiment, as the radiator of 
internal waves we consider a rectangle with sides a and b, and, by analogy with the approach proposed 
previously [4], we analyse two types of generators of internal waves, namely, afictional generator when 
the plane vibrates along its surface in the (5, n) plane, and a piston generator when the displacement 
vector is normal to the plane of the source. 

5. WAVE FIELDS FROM VARIOUS SOURCES 
Assuming, without loss of generality, that the rectangle moves only along the longitudinal 5 axis (see 
the figure), that is 

u = uec, u = ua6(a/2 - ]5])6(b/2 - 1ql) (5.1) 

and substituting expression (5.1) into relations (4.1)-(4.3), we obtain the values of the velocities of the 
fluid motion in the outgoing wave and in the boundary layers on the frictional source. For convenience 
we will represent the velocity as the superposition of the wave and boundary-layer components 
v = v”’ + vb. Approximate expressions for the components vw are written at large distances from the 
source (q % a, b), taking into account the smallness of the viscosity (6, + 3L,) and the smallness of the 
source (a, b 6 L,), where L, = (vA/N)“~ is the viscous wave scale. When calculating the boundary- 
layer velocity vb only the low viscosity approximation is used. In addition, it is assumed that 0 > cp, that 
is, the wave cone is not crossed by the radiating surface (see the figure). In the opposite case, when 
part of the wave is reflected from the radiating surface, the solution loses axial symmetry and the 
expressions become extremely complicated. 

Taking into account the solutions of dispersion equations (3.1) with source function (5.1), the 
asymptotic expressions for velocities of the wave component of the motions (integrals (2.1)) in the 
accompanying system of coordinates can be written in the form 

(u,“, uy”, I$> =A;(sin2Bcosa, 2cos2Bcosa, 2sin28)F,(p, 4) 

Aw = -(i + signp)(i + l)uoab6,v 
I 

4%&i ( 2K)3’2 
(5.2) 

The common factor AT is determined solely by the parameters of the radiator (its dimensions and 
the amplitude of the velocity) and the limiting scale &. The wave function 

3 

F,(P* 4) = coscpsine - sin(nM - a)sincpcose 
Jpsine + qc0se +i ( ky exp ik,p - & dk, 

0 
is a convolution of the solution for a point source [3] and the source function. 

Analysis of the form of the wave function shows that, as in the two-dimensional case, a source of 
small size (a, b Q L,) generates a unimodal beam. The velocity distribution in (5.2) is determined by 
the trigonometric functions. In this case the axial symmetry of the phase characteristics of the motion 
(the form of the wave cone) is conserved for all inclinations of the radiating surface if 8 > cp. However, 
the wave amplitude varies not only along the generatrix, but also along the direction of the wave cone 
(the factor sin(n/4 - a)). The maximum value of the modulus of the vertical displacements h,(O, q) in 
the centre of the unimodal beam is reached when a = 31c/4 and is 

WA 4) (5.3) 

where I- is the gamma function. 
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Hence, the displacement velocity of the particles which is proportional to the velocity and area of 
the source, also depends explicitly on the fluid viscosity, the wave frequency, and the buoyancy frequency. 
The angular dependence sin(cp + 0) reflects the geometry of the problem. Formula (5.3), apart from 
the geometrical factor G and the expression for the area of the radiator, is identical with one of the 
solutions listed in the table of results presented previously in [4]. 

The values of the velocities in the boundary layers take the simplest form in the local system of 
coordinates connected with the radiating surface (6 = 0): 

uf: = u,signpcoscpexp 
( 

L _ u ibigncl 
$ $ > 

(i + s&uwN~13’26Nexp iS 5 
O (i+ 1)x2sin2cp ( > 

--- 

6” 6” 

w, 

b 
II),=+ 0 

u: = -u,signjlsin6sincpexp 

(5.4) 

The final expressions for the factors Wt and W2, describing the dependence of the boundary layer 
properties on the parameters a, b and 6,,, calculated by asymptotic methods, are not presented here 
because of their length. 

The spatial structure of the boundary layers is described by the exponential factors which occur in 
expressions (5.4) and is determined by two transverse scales, characterizing Stokes’ periodic flow 

an in e a 
kz EZnrno41 fL:r ‘s” 

oundary flow (6,, as also the solutions presented previously [43) which contain 

The total periodic boundary flow on the source is extremely anisotropic, and the velocity component 
in the direction of the x axis has the most complex form. Here the motion is characterized by a whole 
set of microscales, including the universal microscale &. Then S, = f,(8)& and 6, = f,(cp, 0)&,, and 
the functionsf,(6) andf,,,(cp, 0) depend only on the source geometry and the normalized wave frequency. 
In the three-dimensional case under consideration 

f,(e, cp) = J2sin0/) sin28- sin*Tj, f,(e) = J?%%j (5.6) 

and for an isotropic radiator - a vertical cylinder the expressive for the function f,(rp, 0) is simplified 
considerably:f,(cp, 0) = tge [4]. 

All the expressions presented above diverge in the critical case (0 = ?cp), when the wave cone is tangent 
to one side of the radiating surface, which is a result of using approximate solutions of dispersion 
equations (3.1). From the structure of the exact expressions it follows that there are no singularities 
over all range of angular parameters, including the critical case, just as in the problem of the reflection 
of wave beams [8]. 

When the radiating surface executes vibrations along the 5 axis being normal to the boundary, i.e. 

u = uey (5.7) 

a radiator that excites waves both in a viscous fluid and in an ideal stratified fluid is obtained (a source 
of the piston type or of variable flow rate). Values of wave components of the velocity are found by 
substituting expression (5.7) into relation (4.1). We obtain 
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(v,“, VT, D,“)= A,“(sin20cosa, 2cos20cosa, 2sin28)F,(p, 4) 

A; = us!%!?!& (5.8) 

The factor&depends only on the source parameters (the dimensions, velocity, and normalized frequency), 
while the wave function has the form 

F,(P, 4) = &in*: qcoso+p3+PP-&~P 

In this case the vertical displacements, as well as the wave phase, are axially symmetric for an arbitrary 
inclination of the radiating surface (0 > cp). The maximum value of the modulus of the vertical 
displacements in the centre of the beam 

(5.9) 

increases as the area and velocity of the source increase and decreases in inverse proportion to the 
distance. 

In a similar manner one can calculate expressions for exponentially decreasing boundary layers, the 
spatial structure of which in an arbitrary case is characterized by two scales S, and &,, (as for the frictional 
source). We obtain 

b v, - -ff!? sign l.l cos <p exp 
x2 

b UO 2) z-- 
Y lc2 

sign l.l &KG exp 

(1 + ip&nP --exp 
$2 

(1 + signy)uo6,ctgcp 
2*2 exp yqw9 (5.10) 

Q 

The expressions for the standard functions W, - WI0 of the type (5.5) are not presented because of 
their complexity. 

On the line of maximum displacements (a = 37r/4) on the wave cone with vertex angle 0 = arc cos(w/N) 
the wave amplitudes for the sources under consideration (5.3) and (5.9) become equal at a distance 

40 = 
sin3(cp + l3)JZ&gl3 

wgnlPl 
‘Qr3( ;) (5.11) 

At short distances, in fact in the boundary-layer domain or in the transition range (q < qo), when 
the contribution from the factor characterizing the geometry of the radiator is predominant, the frictional 
radiator turns out to be more effective. At long distances from the radiator, namely, in the wave domain 
(q > qo), the pattern of disturbances is governed by the geometrical decay, and a source of the piston 
type proves to be more effective, in agreement with energy estimates [9]. 

6. CONCLUSION 

Following to the method proposed previously [4], a complete solution of the three-dimensional problem 
of the generation of disturbances in a viscous continuously stratified fluid by part of an inclined plane 
that executes periodic motions in an arbitrary direction has been constructed. This solution describes 
motions of different scales, namely, three-dimensional beams of internal waves and two types of boundary 
layers. The thickness of one of them, which is an analog of Stokes’ periodic motion in a homogeneous 
fluid, is determined by the kinematic viscosity and the wave frequency 6, = &,(O)&,L The thickness of 
the other layer, namely, the internal boundary layer, that has no analog in the theory of a homogeneous 
fluid, additionally depends on the geometry of the problem via the parameter S,,, = &,(cp, 0)s~. The 
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universal micros&e 8, = dm that occurs in these expressions is determined by the kinematic viscosity 
and the buoyancy frequency of the medium. The trigonometric function f,(Q, cp) has been calculated 
for an inclined plane (the first expression in (5.6)) and for a vertical cylinder [4] (f,(cp, 0) = tg 0). For 
a viscous homogeneous fluid the viscous and internal boundary layers merge into a single degenerate 
boundary layer. 

Due to the interconnection between all the elements of the family of periodic motions in a continuously 
stratified fluid the decay time of singular components (the boundary layers on a rigid surfaces and internal 
boundary flows on the surfaces of discontinuity of the density and its derivatives in the bulk of the fluid) 
is determined by the time for which the whole set of motions exists. that is. by the decay period of large- 
scale waves. 

In the important practical case of exponential stratification and in the low viscosity approximation 
an asymptotic estimate of the exact solution was made for two types of sources - frictional and piston. 
Expressions (5.2) (5.4), (5.8) and (5.10), which describe the wave beams and two families of boundary 
layers, satisfy the boundary conditions of the problem exactly, do not contain any additional adjusting 
parameters and can be directly used for comparison with laboratory experiments and natural 
observations. In limiting cases the solutions obtained reduce continuously to the previously constructed 
solutions of the two-dimensional problem [4]. When molecular effects are taken into account the 
structure of the boundary layers becomes more complex due to the formation of flows induced by 
diffusion [9] and due to splitting of the diffusion and velocity boundary layers when the values of the 
kinetic coefficients, namely, the kinematic viscosity and the diffusivity of the stratifying components, 
are not the same. When solving non-linear equations one must take into account the interaction of all 
the elements of the periodic flows, i.e. both the internal waves and all types of boundary flows also. 

We wish to dedicate this paper to the memory of Yu. V. Kistovich who died after a short serious illness 
on December 27,200l. 
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“Integration” Programme, YOO-58). 
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